Refinement of Tate ’ s Discriminant Bound and Non - Existence Theorems for Mod p Galois Representations

نویسندگان

  • Kazuya Kato
  • Hyunsuk Moon
  • Yuichiro Taguchi
چکیده

Non-existence is proved of certain continuous irreducible mod p representations of degree 2 of the absolute Galois group of the rational number field. This extends previously known results, the improvement based on a refinement of Tate’s discriminant bound. 2000 Mathematics Subject Classification: 11F80, 11R29, 11R39

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformation of Outer Representations of Galois Group

To a hyperbolic smooth curve defined over a number-field one naturally associates an "anabelian" representation of the absolute Galois group of the base field landing in outer automorphism group of the algebraic fundamental group. In this paper, we introduce several deformation problems for Lie-algebra versions of the above representation and show that, this way we get a richer structure than t...

متن کامل

Remarks on Methods of Fontaine and Faltings

Let G = Gal(Q̄/Q) be the absolute Galois group. Let p be a prime and let ρ : G → GL2(Fp) be an absolutely irreducible Galois representation. Under certain conditions, viz., that ρ is odd, by [14], one expects ρ to arise from a modular form of a suitable level, weight and nebentype. Serre also gives a recipe for computing these optimal invariants attached to ρ, which will be denoted by N(ρ) (leve...

متن کامل

The Non-existence of Certain Mod 2 Galois Representations of Some Small Quadratic Fields

For a few quadratic fields, the non-existence is proved of continuous irreducible mod 2 Galois representations of degree 2 unramified outside {2,∞}.

متن کامل

2 00 7 The level 1 weight 2 case of Serre ’ s conjecture

We prove Serre’s conjecture for the case of Galois representations of Serre’s weight 2 and level 1. We do this by combining the potential modularity results of Taylor and lowering the level for Hilbert modular forms with a Galois descent argument, properties of universal deformation rings, and the non-existence of p-adic Barsotti-Tate conductor 1 Galois representations proved in [Di3].

متن کامل

4 The level 1 weight 2 case of Serre ’ s conjecture Luis

We prove Serre’s conjecture for the case of Galois representations with Serre’s weight 2 and level 1. We do this by combining the potential modularity results of Taylor and lowering the level for Hilbert modular forms with a Galois descent argument, properties of universal deformation rings, and the non-existence of p-adic Barsotti-Tate conductor 1 Galois representations proved in [Di3].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003